1,222 research outputs found

    The Approximate Solution of Fredholm Integral Equations with Oscillatory Trigonometric Kernels

    Get PDF

    An Improved Robot Path Planning Algorithm

    Get PDF
    Robot path planning is a NP problem. Traditionaloptimization methods are not very effective to solve it. Traditional genetic algorithm trapped into the local minimum easily. Therefore, based on a simple genetic algorithm and combine the base ideology of orthogonal design method then applied it to the population initialization, using the intergenerational elite mechanism, as well as the introduction of adaptive local search operator to prevent trapped into the local minimum and improvethe convergence speed to form a new genetic algorithm. Through the series of numerical experiments, the new algorithm has been proved to be efficiency.We also use the proposed algorithm to solve the robot path planning problem and the experiment results indicated that the new algorithm is efficiency for solving the robot path planning problems and the best path usually can be found

    Extreme Learning Machine Based Non-Iterative and Iterative Nonlinearity Mitigation for LED Communications

    Full text link
    This work concerns receiver design for light emitting diode (LED) communications where the LED nonlinearity can severely degrade the performance of communications. We propose extreme learning machine (ELM) based non-iterative receivers and iterative receivers to effectively handle the LED nonlinearity and memory effects. For the iterative receiver design, we also develop a data-aided receiver, where data is used as virtual training sequence in ELM training. It is shown that the ELM based receivers significantly outperform conventional polynomial based receivers; iterative receivers can achieve huge performance gain compared to non-iterative receivers; and the data-aided receiver can reduce training overhead considerably. This work can also be extended to radio frequency communications, e.g., to deal with the nonlinearity of power amplifiers

    The Roles of Signal Transducer and Activator of Transcription 3 in Tumor Metastasis

    Get PDF

    Implementing Controlled Digital Lending with Google Drive and Apps Script: A Case Study at the NYU Shanghai Library

    Get PDF
    The unexpected outbreak of COVID-19 near the beginning of 2020 has significantly interrupted the daily operation of a wide range of academic institutions worldwide. As a result, libraries faced a challenge of providing their patrons access to physical collections while the campuses may remain closed. Discussions on the implementation of Controlled Digital Lending (CDL) among libraries have been trending ever since. In theory, CDL enables libraries to digitize a physical item from their collections and loan the access-restricted file to one user at a time based on the “owned to loaned” ratio in the library’s collections, for a limited time. Despite all the discussions and enthusiasm about CDL, there is, however, still a lack of technical infrastructure to support individual libraries to manage their self-hosted collections. With COVID-19 still very much a presence in our lives, many libraries are more than eager to figure out the best approach to circulating materials that only exist in print form to their users in a secure and legitimate way. This article describes the author's temporary but creative implementation of CDL amid the COVID-19 pandemic. We managed to work out a technical solution in a very short time, to lend out digital versions of library materials to users when the library is physically inaccessible to them. By collaborating with our campus IT, a Google Spreadsheet with Google Apps Scripts was developed to allow a team of Access Services Staff to do hourly loans, which is a desired function for our reserve collection. Further, when the access to a file expires, staff will be notified via email. We hope our experience can be useful for those libraries that are interested in lending their physical materials using CDL and are in urgent need for an applicable solution without a cost

    A Fast Evolutionary Algorithm for Traveling Salesman Problem

    Get PDF

    3D Printing of Multifunctional Chitosan-Based Hydrogels and Nanocomposites

    Get PDF
    RÉSUMÉ La capacité de produire des micro- ou nanostructures complexes dans des matériaux mous est importante pour diverses applications telles que l'ingénierie tissulaire, les capteurs, l'administration de médicaments et les dispositifs médicaux. Dans les tissus vivants, les micro-environnements peuvent affecter l'alignement et l'organisation des cellules, conduisant à la complexité structurelle et fonctionnelle des tissus natifs. Les hydrogels d'origine naturelle sont une classe de matières molles qui sont exceptionnellement attrayantes pour les applications biomédicales, car ils simulent l'environnement aqueux des matrices extracellulaires. Cependant, des structures d’hydrogel d’origine naturelle contrôlées avec précision sont difficiles à obtenir par la plupart des méthodes de fabrication classiques, et même avec la fabrication additive. Malgré les progrès récents dans le domaine de la fabrication additive, des défis importants persistent pour fabriquer des hydrogels avec des structures ordonnées et des propriétés mécaniques et biologiques adéquates pour imiter les tissus natifs. En outre, les déchets électroniques et la pollution environnementale constituent un problème sérieux en raison de la demande constante d'appareils électroniques plus récents et plus puissants. De nombreux polymères et composants toxiques non biodégradables sont présents dans l'électronique traditionnelle (tels que les condensateurs et les circuits intégrés), et des solvants toxiques (tels que l'isopropanol, l'acétone et le trichloréthylène) sont parfois utilisés dans leur fabrication. Avec l'importance croissante du développement durable, il est de la plus haute priorité pour les entreprises de l'industrie électronique de développer et de fabriquer une électronique respectueuse de l'environnement. Les nano-composites à base de polymères naturels sont d'excellents candidats pour développer la nouvelle génération d'électronique responsable grâce à leur légèreté, durabilité et leur bas coûts. Ainsi, dans ce travail, nous développons un procédé d'impression 3D pour fabriquer des microstructures complexes de polymère naturel, le chitosane, (CS) et de ses nanocomposites. Ce travail propose des encres à base de CS qui peuvent être fabriquées par impression 3D à température ambiante. La configuration de l'impression 3D est composée d'une étape de translation contrôlée par ordinateur et d'une plate-forme de positionnement à trois axes. L'encre est chargée dans une seringue, qui peut être extrudée à travers une microbuse. Les filaments d'encre sont déposés sur la plaque pour former une structure couche par couche, où elle subit la solidification du filament par évaporation du solvant aqueux. Nous démontrons une caractérisation complète des propriétés des encres CS pour l'impression 3D à température ambiante. Les propriétés rhéologiques des encres CS sont analysées par rhéométrie rotationnelle à taux de cisaillement faible et modéré et la viscosité apparente et le comportement en écoulement sont caractérisés par une analyse en rhéométrie capillaire, afin de concevoir une encre aux propriétés rhéofluidifiante pour une impression 3D réussie. Des tests d'évaporation de solvant de différentes compositions d'encre sont menés en observant la réduction de poids des filaments CS extrudés au cours du temps. Puisque différentes structures fabriquées par impression 3D nécessitent des paramètres de traitement particuliers, une cartographie de procédé est créée en prenant en compte des paramètres tels que le diamètre de la microbuse et la concentration d'encre, pour la fabrication réussie de structures CS unidimensionnelles (1D), bidimensionnelles (2D) et tridimensionnelles (3D). Les résultats de la diffraction aux rayons X (XRD) et des propriétés en traction des filaments CS sont également étudiés, montrant différentes propriétés du matériau obtenues après différentes étapes de traitement. Les échafaudages imprimés en 3D montrent des formes de pores contrôlables (tels que des pores en forme de gradient, carrés et en forme de losange) et une haute résolution de 30 µm. Des échafaudages d'hydrogel microstructurés à surface ridée sont obtenus par une étape de gélification par neutralisation dans l'hydroxyde de sodium. Les échafaudages imprimés et neutralisés montrent des comportements très flexibles et extensibles. La déformation à la rupture des filaments d'hydrogel CS atteint jusqu'à ~ 400% et la résistance maximale est de ~ 7.5 MPa. Les hydrogels microstructurés peuvent guider la croissance des cellules fibroblastiques et induire l'alignement des cellules. De plus, des nanocomposites constitués de CS en tant que matrice polymère, de nanotubes de carbone à parois multiples (CNT) en tant que nano-renfort et d'un mélange de solvants sont préparés en utilisant un procédé de mélange par broyeur à billes. Les encres nanocomposites CS/CNT sont développées pour présenter une auto-réparation à température ambiante. Les propriétés curatives peuvent être traitées par l'exposition à la vapeur d'eau et le nanocomposite peut restaurer la conductivité électrique et les propriétés mécaniques. L'auto-réparation est rapide, se produisant en quelques secondes après l'endommagement du nanocomposite. L'impression 3D nous permet de fabriquer des nanocomposites CS/CNT très conducteurs (~ 1450 S/m). L'impression 3D assistée par instabilité est aussi développée pour fabriquer des fibres CS/CNT microstructurées hautement acdaptables, en raison de l'instabilité de l'enroulement de la corde liquide. Des fibres CS/CNT microstructurées présentant des liaisons sacrificielles et une longueur cachée permettent aux nanocomposites d'être très extensibles (déformation à la rupture de ~ 180%). L'extensibilité et la conductivité électrique élevées des fibres CS/CNT permettent de concevoir des capteurs portables. Les capteurs de contrainte personnalisés sont fabriqués par impression 3D assistée par instabilité et ont démontré leur capacité à détecter les mouvements du coude humain. Le nanocomposite CS/CNT peut également être utilisé pour détecter l'humidité due au gonflement du polymère sous une humidité différente de l'environnement. La nouvelle méthode d'impression 3D d'hydrogels CS et de nanocomposites CS/CNT présentée ici ouvre de nouvelles portes pour concevoir et produire des structures tissulaires 3D à compatibilité topographique, biologique et mécanique ainsi que pour des applications de capteurs de déformations ou d’humidité. ---------- ABSTRACT The ability to produce complex micro- or nano-structures in soft materials is significant for various applications such as tissue engineering, sensors, drug delivery and medical devices. In tissues or organs, surrounding micro-environments can affect cell alignment and organization that lead to the biological and functional complexity of native tissues. Naturally derived hydrogels are an important class of soft materials, which are exceptionally attractive for biomedical applications since they simulate the aqueous environment of extracellular matrices. However, precisely controlled architectures of naturally derived hydrogels are difficult to obtain through most conventional fabrication methods, and even with three-dimensional (3D) printing. Despite recent progress in the field of additive manufacturing, significant challenges persist to fabricate hydrogels with ordered structures and adequate mechanical and biological properties for mimicking native tissues. Besides, electronic waste and environmental pollution is a serious issue due to constant demand for newer and more powerful electronics. Many non-biodegradable polymers and toxic components are found in traditional electronics (such as capacitors and integrated circuits), and toxic solvents (such as isopropanol, acetone and trichloroethylene) are on occasion used in their fabrication. With the growing importance of sustainable development, it is of the upmost priority for companies in the electronic industry to develop and fabricate eco-friendly electronics. Natural polymer-based nanocomposites are excellent candidates for developing the next-generation of bio-sustainable electronics due to their lightweight, low-cost, and sustainable properties. Thus, in this work, we develop a 3D printing process to fabricate 3D microstructures of a natural polymer - namely chitosan (CS) - and its nanocomposites. This work proposes CS-based inks that can be fabricated by 3D printing at room temperature. The setup of 3D printing is composed of a computer-controlled translation stage and a three-axis positioning platform. The ink is loaded into a syringe, which can be extruded through a micronozzle. The ink filaments are deposited on the plate to form a structure in a layer-by-layer manner, where it undergoes filament solidification through solvent evaporation. We demonstrate a comprehensive characterization of the properties of CS inks for 3D printing at room temperature. The rheological properties of CS inks are analyzed by rotational rheometry at low to moderate shear rate and the process-related viscosity and flow behavior are characterized by capillary flow analysis, in order to formulate inks with shear thinning behavior for successful 3D printing. Solvent evaporation tests of different ink compositions are investigated by observing the weight reduction of extruded CS filaments with time. Since different structures fabricated by 3D printing require different processing parameters, a processing map is generated by considering parameters such as micronozzle diameter and ink concentration for the successful fabrication of one-dimensional (1D), two-dimensional (2D) and 3D CS structures. The results of X-ray diffraction (XRD) and tensile properties of CS filaments are also investigated, showing different material properties obtained after different processing steps. The 3D-printed scaffolds show controllable pore shapes (such as gradient, square- and diamond-shaped pores) and a high resolution of 30 µm. Microstructured hydrogel scaffolds with wrinkled surface are obtained through a gelation step of neutralization in sodium hydroxide. The as-printed and neutralized scaffolds show highly flexible and stretchable behaviors. The strain at break of CS hydrogel filaments reaches up to ~ 400% and maximum strength is ~ 7.5 MPa. The microstructured hydrogels can guide fibroblast cell growth and induce cell alignment. Further, CS-based nanocomposites made of CS as a polymer matrix, multi-walled carbon nanotube (CNT) as a nanofiller and a solvent mixture are prepared using a ball mill mixing method. The CS/CNT nanocomposite inks are developed to exhibit self-healing at room temperature. The healing properties can be processed via exposure to water vapor and the nanocomposite can restore electrical conductivity and mechanical properties. The self-healing is rapid, occurring within seconds after the damage of the nanocomposite. 3D printing enables us to fabricate highly conductive (~ 1450 S/m) CS/CNT nanocomposites. Instability-assisted 3D printing is developed to fabricate high tunable microstructured CS/CNT fibers, due to the liquid rope coiling instability. Microstructured CS/CNT fibers featuring sacrificial bonds and hidden length allow the nanocomposites with high stretchability (strain at break of ~ 180%). The high stretchability and conductivity of CS/CNT fibers enable the nanocomposite to be designed as wearable sensors. The customized strain sensors are fabricated by instability-assisted 3D printing and demonstrate their ability to detect human elbow motions. The CS/CNT nanocomposite can be also used to sense the humidity owing to polymer swelling under different environment humidity. The novel 3D printing method of tailoring CS hydrogels and CS/CNT nanocomposites demonstrated here opens new doors to design and produce 3D tissue constructs with topographical, biological, and mechanical compatibility as well as wearable sensor exhibiting strain and humidity sensing ability

    Symmetrical Short-Circuit Parameters Comparison of DFIG–WT

    Get PDF
    Renewable energy with new resources is depleting the fossil fuel-based energy resources. Renewable energy sources (such as wind energy) based power generators are important energy conversion machines and have widely industrial and commercial applications due to their superior performance, and the fact that they endure faults well and are environmentally friendly. The study of the transient behavior of such generators under fault condition has drawn much attention. This study presents Doubly-Fed Induction Generator (DFIG) perturbation during a symmetrical (three-phase) short circuit (SSC) at different points. Simulation results reveal that after a fault occurs, there is decay of SC parameters (transient time, maximum current, steady-state and voltage dip) at the point of common coupling (PCC) and the grid-side converter (GSC) of DFIG. Simulation results depict a more sensitive and robust point during a SSC of DFIG. Current findings present the main difference between the PCC and the GSC during SSC faults. These comparisons provide a more precise understanding of fault diagnosis reliability with reduced complexity, stability, and optimization of the system. This study verified by the simulation results helps us understand and improve the performance of sensor sensibility (measurements), develop control schemes, protection strategy and select a more accurate and proficient system among other wind energy conversion systems (WECS)
    corecore